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The combination of magic-angle spinning and multiple-pulse  inhomogeneous-like for increasingly high spinning speed
sequences for line-narrowing in solids with homogeneous spin  However, as a consequence of the homogeneous characts
interactions is analyzed using Floguet theory. It is found that, for  finite linewidth always remains. When investigating the line
quasi-static conditions and for special synchronization conditions, width as a function of the rotor frequency, it was derived the
line-narrowing is possible while for other conditions destructive it behaves according to &4 in the fast MAS limit 7). Corr

interference of the two techniques takes place. However, even for ideri h hnical limitati lated he i f it
optimum line-narrowing conditions, fundamental limitations with sidering the technical limitation related to the increase of t

respect to the achievable linewidth are found, whereas the condi- ~ SPinning frequency beyond the currently achievable frequen
tions of recoupling spin interactions are more easily realized. The 0f 35 kHz, a considerable improvement in resolution by MAS
implications of these results with respect to improving existing alone thus cannot be expected in the near future.

line-narrowing techniques or techniques for the design of specific Multiple-pulse line-narrowing techniques based on the a
Hamiltonians are discussed. © 2000 Academic Press eraging of the spin part of the interactions are an alternative
fast MAS. They are more efficient with respect to the line
narrowing of homogenous lines since the cycle time of the:
sequences can be usually made much shorter than the rc
griod. Moreover, applying special symmetry conditions, higt
ger terms contributing to the linewidth can be eliminate
t—l]). The main problem using multiple-pulse spectroscop

1. INTRODUCTION

One of the advantages of NMR spectroscopy with respectq
other spectroscopy techniques is the relative ease by which

internal spin interactions can be manipulated in order to extr . A )
the information one is interested in. Important examples pPWEVer, 1S that pulses do not discriminate between the isot

such manipulation techniques are line-narrowing techniqul§ @nd the anisotropic (space) part of the interaction. That |
such as multiple-pulse line-narrowing sequence) gnd pulse sequences for eliminating chemical-shift anisotropy al:

magicangle spinning (MAS)Z, 3. These techniques remove €MOVe the isotropic shift. o
This limitation can be overcome by combining MAS anc

the anisotropic spin interactions that cause line-broadening in’ ' X -
solids so that considerable resolution can be obtained. Ap&l¢!tiple-pulse sequences to so-called combined rotation a

from line-narrowing, multiple-pulse techniques become ifnultiple-pulse spectroscopy (CRAMPS) experimena-{14.
creasingly important also for designing particular forms of th@ these experiments the multiple-pulse sequence is suppo:
spin-interaction Hamiltonians, for instance, for the generati¢f Predominantly deal with the dipolar Hamiltonian, while the
of MQ coherences4( 5). chemical-shift anisotropy is removed by sample spinning.
The most convenient way to average anisotropic interactiofgs, however, soon realized that both line-narrowing tecl
is magic-angle spinning. By rotating the sample sufficientlviques interfere with each other when the characteristic tin
fast at the so-called magic angle of 54.7° to the magnetic fiektales of the averaging processes are in the same order
the space part of the anisotropic spin-interaction HamiltoniaRgactice, CRAMPS experiments were thus confined to rel;
is averaged out and the corresponding line-broadening véively slow MAS frequencies of 2-3 kHz. Such rotor speed
ishes. While this is fully true for inhomogeneous lines in thare not always sufficient for the removal of the chemical-shi
sense of Maricq and Waugl6)( e.g., for chemical-shift an- anisotropy in the high magnetic fields of modern NMR spec
isotropy, the situation is more difficult for so-called homogefometers. This is one reason, among others, why nowade
neous interactions such as the multispin dipolar interaction. high-speed MAS experiments are becoming increasingly po
this case, sufficient averaging is obtained only at high spinninar (5).
speeds, i.e., when the spinning frequency exceeds the stronge$he use of multiple-pulse sequences under the conditions
dipolar coupling strength. fast MAS was therefore investigated in previous papé&fs-(
As was analyzed previously’ based on a special Floquetl7). Two strategies for avoiding interference effects wer
formalism @), the dipolar interaction behaves more and morfeund to be promising. Following the original CRAMPS ap-
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proach, one can decouple both techniques using different time
scales for the characteristic times of the two techniques. Under
fast MAS, thus the cycle time of the pulse sequence must be
reduced as much as possible leading to windowless or semi-
windowless sequenced¥, 16§. The other approachl{) was

to investigate special ratios of the cycle timeand the rotor
period Ty for which interference vanishes or is greatly reduced.
Such synchronization conditions were established in zero-order 15 KHz

10 kHz A//JK
approximation and a simple graphical scheme for the analysis /\J\‘JL
of pulse sequences under MAS was develofed (). While

the treatment discussed above enables one to conveniently
analyze necessary conditions for the design of pulse sequences, 20 KHz
the limitation of this zero-order approach soon became evident.

In particular for analyzing line-narrowing sequences, the ho-
mogeneous character is important, and a more accurate de-
scription is necessary. It is therefore the intention of this work 55 11
to improve the treatment to the next order. After a brief
experimental section to demonstrate the effect of interference
on the line-narrowing efficiency, we will apply the Floquet
approach discussed irv7,(8) to the case of multiple-pulse 27 kHz

sequences.

2. EXPERIMENTAL
30 kHz

As motivation for the theoretical analysis following below,
we now briefly investigate experimentally the limitations of
multiple-pulse sequences under fast MAS as a function of the
rotor frequency. The semi-windowless WHH-4 sequence of  35kHz
Refs. (L7, 16 is used as an example. The experiments were
performed on a Bruker ASX spectrometer with a standard et mimpet
Bruker 2.5-mm MAS probe allowing a maximum rotor fre- #“ 12 w0 8 6 4 2 0 -2 <4
quency of 35 kHz. The pulse sequence accordindl&) las ppm
been implemented with a 90° pulse length ofi so that the  FiG. 1. Selected multiple-pulse assisted MAS spectra_aflanine ac-
total cycle time is 12us. For the acquisition of the signal,quired at the rotor frequencies specified to the left. With the exception of
additional 4us are introduced after every pu|5e cycle foHOWin@aselin_e-like spectrum at 30 kHz, the spectra haye been normalized to the s
the strategy outlined in16). The effective cycle time thus is Pak high of the strongest peak (Cpleak). The interference between MAS
. . and the WHH-4 pulse sequence can be estimated by the corresponding |
increased toward 1fs. L-Alanine was used as a test S"J‘mpl%roadening. For more details on the experiment see Section 2.
Although the static linewidth of alanine extends 35 kHz (thus
representing a real solid that cannot be dealt with by MAS
10”6)’ it can be convgnlgntly narrowed using muIUpIe-puIsqf ency part, the linewidth decreases with increasing rot

quences. Thus, alanine is an ideal sample for our purpose,thé ) . . .
study of possible interference effects between pulse sequelFIr guency. In thls range, MAS increasingly c_ontrlbutes t_o th
and MAS. _elmlnatlon of Ilne-brogdgnlng effects resulting from misad

For this study, the rotor frequency was varied in steps oflystments, hardware limitations, and the error terms of tt
kHz between 10 kHz and the maximum of 35 kHz. Figure {/HH-4 sequence. . - _
shows selected multiple-pulse assisted MAS spectra for the*t @round 12-13 kHz—still in the quasi-static regime—z
rotor-frequency values of 10, 15, 20, 25, 27, 30, and 35 kHRlateau is obtained which ranges up to 22 kHz. The upp
As can be seen from this selection, the influence of the rotétlue corresponds to aroundry = 5 which, according to
frequency is quite dramatic between 25 and 35 kHz, withZgro-order theory, is a condition of decoupling between tt
complete collapse of resolution at around 30 kHz. two line-narrowing techniques. That is, the plateau range

For a more quantitative analysis, the residual linewidtifsom quasi-static conditions up to the synchronization ranc
have been evaluated. Figure 2 shows the resulting linewidthveithout displaying any influence of zero-order synchroniza
the CH, peak of the multiple-pulse assisted MAS spectrum di®n conditions such as/ty = 3, % & and so on. These

a function the scaled rotor frequenty:. In the low-fre conditions are obviously washed out by the influence c
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600 " — T —T— — T 3. THEORY
Av[HA | .
3.1. General Approach

500 1
' Floquet theory is a powerful tool for the treatment of exper

iments under MAS 18-21. An analytical Floquet formalism
4004 1 that is particularly suitable for our purpose was developed |
. . " Ref. @). It can be applied to a general rotor modulated Harr
| iltonian

300 =
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FIG. 2. Residual linewidths of the CHines as a function of the scaled regardless of the partICU|ar form of the 'SOtrop%Ol and

rotor frequencyt./s (t. is the cycle time of the pulse sequence ands the ~anisotropic ¢, m = =1, +2) components. The spectral
rotor period) for the series of multiple-pulse assisted MAS spectraatdnine. Separation and the residual broadening of the NMR lines insi
For low values of the rotor frequency, the linewidth is decreasing due to thf each MAS sideband are then conveniently described by t
increasingly stronger averaging by MAS until at arougé; = 0.2 a plateau effective Hamiltonian

is reached. At arounti/Tr = 0.3 interference effects start to dominate and lead

to an increase of the linewidth. At the first recoupling conditigi; = 0.5 the

recoupling is so strong that the linewidth cannot be determined anymore. For

higher rotor frequencies, the linewidth then decreases again until finally the Herr = o + E
maximum spinning frequency of 35 kHz is reached.

Hon, H
U %l
meR

2]

When MAS is combined with cyclic multiple-pulse se-
higher order terms, that is, they seem to merge with eagbences, the interaction Hamiltonian, Eq. [1], acquires a do

other and with the quasi-static limit. ble time periodicity,
Reasons for line-broadening in this range are probably error
terms of the pulse sequence that are not fully removed, instru- 2
mental imperfections that cannot be completely dealt with by Je(t)y = > emHge, (1), 3]
fast MAS (for instancé3, inhomogeneities), and contributions m=-2

due to the interference of the two techniques (i.e., due to the

failure of the quasi-static approximation). Nevertheless, resgpce here also the Fourier componeiits are periodically
lution in this range is much better than that found in MASrime-dependent with the cycle tinte of the given multiple-
alone spectra (not shown) where the CH and;@kbups are pulse sequence.
still not resolved. As usual in multiple-pulse NMR, the impor- Two cases of pulsed line-narrowing techniques are to t
tance of the different contributions is difficult to judge. Qua|distinguished now, the Lee—Goldburg-type sequen@® (
itatively, one would assume that the interference effects do Rghere (similar to MAS in the real space) the periodicity intro
dominate in the plateau because they are supposed to strofglf¥ed by the radiofrequency is continuous, and conventior
depend on the rotor frequency. multiple-pulse sequences were thi&,(t) are discontinuous
At around 20 kHz the effects of synchronization start tRnctions of time {, 9—11. In the first case, a double Floquet
become important. Above 27 kHz, close to the recouplingeatment appears to be convenient, while in the second the |
conditiont /7, = 3, the linewidth becomes even too large to bef Floquet theory for both modulations is no more advant
measurable (merger of the three lines) while the MAS-aloggous. Separate treatments for the two cases, however, car
linewidth now is below 1 kHz for the Ckgroup. Finally, avoided by noting that in any case the data are acquired only
starting at around 34-35 kHz, the lines of the multiple-pulsaultiples of the cycle time. Thus, the much simpler averag
spectra become resolved again. Hamiltonian treatmentl(, 11) can be employed for both cases,
Summarizing these findings, one can state that the interpgésregarding the detailed spin dynamics between two acqui
tation of the results on the basis of zero-order theory are rign points.
satisfactory since most of the predicted synchronization con-For simplicity, we thus confine our study, without loss o
ditions are washed out by the homogeneous nature of tenerality, to the case of a conventional multiple-pulse s
interactions, which is not accounted for in this approximatioguence. In order to bring the double time-periodic Hamilto
A more detailed analysis that includes the homogeneous parisn, Eq. [3], to a form similar to that of Eq. [1], an average
of the interactions is thus necessary. overt, first has to be made. Since the periodicity withis
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determined by the multiple-pulse sequence, we employ the 2

Magnus expansion2@) to replace the time-dependeitt,(t) HH) = > eimortge 6]

with time-independent Fourier components. Unlike the treat- m=—2

ment of a static sequence, however, here the time-variation

induced by MAS is also taken into account. For the averaginfine Fourier componentdt,, are expressed now through a

we consider the general expression ok arder term in the \jagnus expansiorit,, = #© + #® + - - -. The remaining

Magnus expansion, rotor modulation can be removed as in the case of MAS-alot
experiments, employing the procedure described’jn Con-

B (n+Dte o fining the study to the part which is responsible for residu:
#®(n) ~ eMertidt, [ Moo, .. broadening, one thus can conclude that the combined effects
nte nte MAS and the applied multiple-pulse sequence can be chare
t terized by an effective Hamiltonian of the form of Eq. [2], i.e.,
J e NdLF (K (t), . .., Hn(t),  [4] o
nte N7 _ - m» —m. .
%eff - %O + % zme ’ [7]

corresponding to an arbitrary cyaiénside a given multiple-pulse ,
sequence, that is, within the time intervat,[ (n + 1)t.]. where the Fourier componeni$,, are replaced by the aver
The form of the functionF (7€, (t), . .., #n,(t1)) is not aged componenti .

relevant for the present discussion since it does not explicitl We pon5|der now a general mglUpIe-pu'Ise sequence wi
depend on time. Substituting t, — nt, t, te, — c¥cle timet, that is composed dfl different time intervalsr,
. > 1] -1 -1

nt, ..., t, —t, — nt, Eq. [4] transforms to (with a= 1,---, N). During each of thgse intervals, th'e spin
interactions are represented by a toggling-frame Fourier col
ponentH ... In Eq. [3] one thus has to s&t,, = H,, for nt,
<t<nt,+ 7, -, ¥, =Hy,fornt, + =, + --- +
. " o1 < T < (n + 1)t.. For simplicity we confine our study to
> j eimkmgtkdt{(f gimewortiady the &-pulse approximation, although in some of the expers
0 o ments under fast MAS a semi-windowless limit is actuall
used. The treatment of the semi-windowless sequence, hc
o ever, gives only additional terms (crossterms) that would lee
f eMeMdtF(Hn (L), - - -, Hm,(11) to complications without providing much new insight. Apply-
0 ing the above procedure up to the first-order terms in tf
Magnus expansion, one obtains

?}7€<k>(n) ~ @i(mcEmeate - +m)or(nt)

— ei(mk+mk—1+' . .+m1)(ntc)§€(k>(0)_ [5]

The factor obtained after integration is independent cil- O = 1 > HaoTe

though the modulation by MAS is included in the integral e,

#%(0). It characterizes the “internal structure” of the multi 1

ple-pulse sequence throughand ¥, (ti). The time-depen 37(5513) == cn(T) Hum 8]

dence by MAS is expressed in Eqg. [5] by the modulation factor te * '

expimwg(nty)], (m= m, + m; + -+ m,), which now

depends on the “position” on the time axis of the considerggip,

cyclen. Thus, the average Hamiltoniaf® (n) of an arbitrary

cycle n can be expressed by the average Hamiltonian of the gimor.

first cycle #%(0) and a phase factor expjwg(nt,)] that Co(7,) = @MeRmt - 1)

represents its position on the time axis of the experiment. It is

important to emphasize here that, although the above result is

valid only at discrete moments of timie= nt,, in practice a and

continuously running timé can be assumed since the obser-

vation windows are | in r multipl f th I - —i

ti?ntg dows are located at integer multiples of the cycle Gew — o I en(75)C () [ Him Ho o]
Since the above considerations apply to any order in the mo e

Magnus expansion, we finally find that Eq. [3] can be rewritten + > Com(T)[Ham Ha -ml}

in a form similar to that of the MAS Hamiltonian Eq. [1], i.e., a

-1
ime

9]
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P\ pra=m Here,w; is the isotropic chemical shift of thieh nucleus and
_ - D _ (if) —
W = (Zt) > A co(rp)cq(T)[Hpp Hadl a, B run overx, y, andz. H,, = EPE on (0, cpij)(3!ialju .
¢ bq  B>a Ii1;) is thea component of the full dipolar Hamiltonian, while
Fo = 3, bi(0;, @)1l represents its isotropic part (with
+ 2 Cog(T)[Haps Hal), [10]  respect to the spin operators). The coefficientgr) andf ()
* represent those parts of what we call synchronization functio
that are independent of( ). They are derived in the Appen-
with dix as
1 . 27 1 — codMwgT)
Cog(Ta) = o (Cprq(Ta) — €90RTH ramig (1)) [11] f ()= 3 TTR [16]
and and
1 ) 1 sin(MwgT)
— _ plqor(tit: - +7e-1) I _ R
Com(Te) = [ (OnlTa) — € r). [12] On() = & (1 Mo ) [17]
3.2. Specific Example Those parts of the synchronization functions that dependon |

o _ ) ) B) are also derived in the Appendix and are given by
The treatment so far is still general since neither the spin system

nor the pulse sequence is specified. To keep the analysis simple,

we now confine our study to the WHH-4 pulse sequetlelhe £X(7) = 2[ sin<5 meT> + 1 005(5 me1-> }
treatment of this specific example may then serve as a guideline " 2 3MwgT 2

for the analysis of any other multiple-pulse sequence. That is, we

are not so much interested in this specific sequence but in studying X cos( MwgT

the general aspects of such experiments on this example. In the

following we thus concentrate on the results and refer the inter-

ested reader to the Appendix for details of the calculation. fi(r) = 2[ sin(
Applying Egs. [7]-[12] to the particular conditions of the

WHH-4 pulse sequence and restricting the analysis to the % cos<

first-order terms of the effective Hamiltonian, Eq. [7], one

obtains (see Appendix)

fiqr) = [sin(

meT
Hen = + H g [13]
i X cos( MwgT
wit
30 (0) 1
%eﬁ :§E wi(lix+ liy+ Iiz) [14]
X COS< MwgT
and
1 =2 sl o) + 5 cod 5 moer) |
(1) = 2| sinl 5 MwgT coy - MwgT
_ B [97652), ‘376(,0,)“] 3MwgT 2
=g+ X {
m R X co MwgT
[Hom Hp -l
= E fm(T) E f%B(T) — yz _ H 1 §
- s 2mwgb f¥4(7) = 2| sinl 5 MwgT | + 3Mmogr co 5 MwRT

[Ff FDm]}

meR

X

')

o
/(a\

+ gn(7) [15] [18]
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a . . ' . . ‘ , multiple-pulse sequence. The ideal situation is given when tl

two techniques are completely decoupled from each other:
this case, the lowest order terms would be eliminated, fc
instance, by the action of the multiple-pulse sequence while t
higher order terms are greatly reduced by fast spinning. Ho
ever, as will be shown below, there is a strong interferenc
between MAS and the multiple-pulse sequence, and only f
some special conditions is decoupling approached but ne
fully reached in practice.

To demonstrate this, we consider the results obtained in t
previous section. The zero-order term of the effective Hami
tonian, Eq. [7], corresponds to the scaled isotropic chemic
shift. Therefore, at this level there is no interference betwet
sample rotation and pulse sequence. Interference starts to
pear only with the first order. Comparing Eq. [15] with the

b first-order term of the MAS-alone case,
3.0
f £ P

2.0r

9u(T)

[Hom H2-ml

%(D —
eff meR

: (19]

1.0} one can identify the following effects that are responsible fc
interference: (i) the original 4, z) component of the MAS-
alone case (see commutator in Eq. [19]) splits into all possib
(a, B) components (see Eq. [15]), and the relative contributior
of each of the components to the resulting Hamiltonian al
weighted by synchronization functiorfs(7) f2°(7), and (ii)
- there is an additional term in Eq. [15] that represents th
20 LT . . . . . isotropic contribution with respect to the spin operators, ¢
already discussed.
T/ The two narrowing techniques act independently of eac

FIG. 3. (a) The synchronization functiorg,(7), Eq. [36], for both Fou other if the first-order term given by Eq. [15] is eliminated
rier indicesm = 1, 2 as a function ofi/r, (7 is the pulse length of the This translates into following conditions for the synchroniza
semi-windowless WHH-4 sequence—see Experimental). (b) The same plottimn functions:gm(q-) =0 andfm(q-) . fr‘;ﬁ(q-) = const.= A,

the six SynChrOniZatiOn fUnCt|OTf$(T) fg\’?ﬁ)(’]’), Egs. [35] and [18], that result Slmultaneously for both Fourler Componems,: 1, 2.1n thls
fcr(())rr]nsggrzgsmble combinationa, B8 = X, y, andz; here onlym = 1 was case, Eq. [15] transforms to

[HRm+ Hom+ H2W HY
Figure 3a shows a plot of the functiogs(r) and Fig. 3b of Few -~ A +HY ntHZ Wl
fo(7) f2P(7). On this basis we are able now to discuss interfer eff m 2Mog B

. . m
ence and synchronization.

0. [20]

Thus, % vanishes due to the magic-zero condition of th
dipolar interactiorHy, + Hy, + H2, = 0, that is, due to the
For discussing the line-narrowing efficiency of multipleaction of the WHH-4 pulse sequence which, under these cc
pulse techniques under MAS conditions we rely on the resuttgions, does not interfere with MAS.
obtained for the WHH-4 sequence but the conclusions drawnAs can be seen from Figs. 3a and 3b, the above requireme
on this basis are more generally valid. As in the case of fasin be fulfilled only for a limited number of cases. More
MAS (7) and of multiple-pulse sequencek, (1) alone, here specifically,g,.(7) is exactly zero only when the ratigry ~
also the line-narrowing is primarily due to the removal ofgT equals zero (see Fig. 3a), that is, when the (quasi-)sta
two-spin correlations fron¥.;. The way, however, in which regime is ideally fulfilled. The other relatiofi,(7) - f3*(7) =
the remaining spin correlations contribute to the residudl,, holds if 7/7x = k/2m for m = 1 and 2 andk = O, 1,
broadening is different since each order in the power expansidn .. The case ain = 1 is illustrated in Fig. 3b, where all six
of ¥ contains the effects of both MAS and the appliedynchronization functions are shown. For= 2 everything is

3.3. Synchronization
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similar except that the/rz-axis is “compressed” by a factor of 20
two. Therefore, in this case the valugsy = k/4 (k = 0, 1, Fue
2 ...) satisfy the above requirement.

As long as none of the functiorfg(7) - f2¥(7) = A, and
gn(7) can be neglected, the above conditions are fully satisfied

only when /7y is close to zero, that is, for the (quasi-)static or
case. In this case,(7) approaches zero (Fig. 3a) while the
synchronization function,(7) - f*(7) are close to each other sk

(Fig. 3b). Then$) can be very well neglected, MAS and the
applied multiple-pulse sequence act almost independently, and . . .
decoupling is fully achieved. However, one should note that in 0 05 10 15 20
practice quasi-static conditions are difficult to be obtained toftn
outside of the classical CRAMPS limit (slow spinning at FIG. 4. Scaling functionF,,, according to Eq. [24] as a function &f 7.
around 2 kHz). In the case of multiple-pulse assisted MARis function represents the influence of interference effects on the resid
experiments where sufficiently fast MAS is supposed to COI’f—eW!dths' The plot_thus can be taken as a quahtatn_le representatlo_n of t
. . . inewidth as a function of /7z. The range corresponding to the experiment
tribute to decoupling, a compromise must be found betwegn, Fig. 2) is indicated by two dotted fines.
the cycle time of the applied pulse sequence and the achievable
spinning speed.
From this point of view, the synchronized casesr{ = M, ~ (1,9 571 [21]
k/2) withk > 0 appear to be more advantageous since they are
well compatible with the fast spinning regime. Moreover, iy the estimation of the second moment we should take in
principle, they can be exactly fulfilled for a rotating samplg.count that thea|, @) components in Eq. [15] are related to
while the other conditionk = 0) is exactly valid only for the ¢5ch other througB H®,, = —3F®. One can further simplify

static case. A drawback of this approach, however, is that #j analysis assuming that all spins have approximately t
synchronization condition/'r, = k/2 leads to very large dwell same isotropic chemical shifts. Then, the commutation pro
times: even in the most favorable casér{ = 3 and a maxi- grtjes Fom lie + 1,.] = 0and H2,, 1, + 1,] = 0 hold so
mum rotor frequency of 35 kHz) the corresponding dwell timgpat the second moment depends only on tkezj dipolar

ot = 37 = 100 us, is so large that there might be problemgjamiltonian as in the case of MAS alone. Thus, the fine
with the spectral width in the case of off-resonance acquisitigipression,

(which is mostly used in multiple-pulse experiments). Another,

more principal, problem is the second term #{ which M,= S MWSF (1)F (7) [22]
cannot be made zero by synchronization (see Fig. 3a). How- 2 2 " P
ever, since it is scaled by the comparatively small values of

9n(7) (compare Fig. 3a with Fig. 3b), it can be neglected igontains the momer1*® of the MAS-alone case scaled by

m,p

first approximation. the functions
Inspecting Fig. 3b again, the/r; range for some of the
decoupling conditions is very narrow, for instance, foit; = F (1) = f. (D[ F5(r) — £, (23]

1. Apart from the difficulty in adjusting such narrow conditions,

iLis not clear how much the close neighborhood of recouplir]_gere we have assumed that all terms with different Fouri
conditions affects the achievable resolution in these Casﬁﬁiicés contribute equally to the second moment, while i
More generally, outside of special synchronization condition ality the contribution depends on the arrangement of spins

one can no I_onger J_udge the nharrowing _efﬁmenc_y by simp e investigated system. However, this affects only the absolt
qualitatively inspecting the synchronization functiongr) - value of M, for a given spin system but not the qualitative
f<’(7). Their behavior gets extremely complicated as we MOYRhavior ofM, as a function ot /r

away from the special pointg'r, = ki2 (see Fig. 3b). To  rjgre 4 shows the scaling function of the second mome
further analyze the linewidth in these cases one can use a more

uantitative approach based on the second moment analysis.
g PP y Fuz= > Fu(1)F (1) [24]

m.p
3.4. Linewidth and Second Moment
as a function ot /7. This function represents the influence of
The residual linewidth is related to the second moment accoidterference effects relative to the MAS-only second momer
ing to Av ~ VM, (see also7)). The contribution of the dipolar M¥*°. It should be noted tha}*® is not a constant but a
interaction to the second moment is in our case given by decreasing function of the rotor frequency. For our qualitativ
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considerations, however, we can disregard this since linewidiiitial state is not defined d@t= 0 but at a timet, so that the
changes caused by interference are exclusively representedhitial statep(t,) already incorporates the influence of MAS.
the scaling functiorf ;. The result finally obtained for the general MAS propagator i

By inspecting Fig. 4, one can identify “partial synchroniza-
tion” windows, whereM, (represented by,.) is compara Upas(ta ty)
tively small (decoupling case), and windows of strong destruc- )
tive interference where the opposite applies (recoupling case). = >, e™ereCl(—m)e Hetzth 3 gmesaC(m).  [25]
Qualitatively, this result agrees well with the measured curve. m my
In particular, it can be seen in Fig. 4 that the distinct synchro-
nization conditions expected from zero-order theory are The coefficientsC(m) represent the refocused part and ar
smoothed out as is indeed found experimentally. Further, it caportant for experiments where sideband analysis is of intere
be seen that full decoupling is not possible between the tioth these coefficients and the effective Hamiltoriién are given
first recoupling conditions/7x = 0.5 andt./7z = 1. On the by power expansions in &4 (see Ref.§) for the explicit form).
other hand there are two conditions of full decoupling at For the treatment of combined MAS and multiple-pulst
aroundt/r; = 1.3 andt /7 = 1.5. experiments, we apply Eq. [6] to the propagator, Eq. [25

A strong deviation between theory and experiment is fourwhich then transforms to
in the low-frequency range up to about 10 kHz where the
experimental lines are relatively broad, although quasi- statlcU (t,, 1))
conditions are quite well fulfilled in this regime. However, as ~MASY'2 1
already discussed, the experimental performance of the applied
pulse sequence (which is not high-order compensated) is rel-
atively modest and cannot be fully compensated by MAS at
such low rotor frequencies. Only at frequencies above 10 kHz
is MAS able to sufficiently average the remaining term<(
wa, Llwg, .. .) in thepower expansion o¥¢{) (7).

If one compares the experimental result and the theory mo
closely, there are some small differences in the shape of &efficientsC(m) can be found by replacing the bare Fourie
recoupling peak at/7x = %, which seems to be sharper in Fig. Zomponents(,, with the averaged componerits, in the corre
than in Fig. 4. Here one should keep in mind that the decreasesBpnding expressions. An important consequence of Eq. [26]
the MAS-only moment with the rotor frequency is not accountdhat the formalism developed in the previous sections is mo
for by the scaling functiorfr,, while it contributes to the exper generally applicable. Itis not only useful for deriving the effective
imental data. Apart from that, some deviations between thedmgamiltonian, Eq. [7], butin fact the full-time propagator, Eq. [26]
and experiment are not unexpected, considering the various sh@P be handled. That is, in principle, it can be employed to al
plifications made for the derivation of Egs. [22] and [23]. Ifyclic pulse NMR experiment under MAS.
particular, the treatment is valid only in first order and &haulse
approximation has been used while actually the opposite, a semi- 4. DISCUSSION AND CONCLUSIONS
windowless sequence, was applied experimentally.

— z emintg’éT(_mj)e—i?:'feﬂ(trtl) E emkanE(mk)_ [26]

m; Mk

The result is of the same form as Eq. [25] only with the
coefficients and the effective Hamiltonian replaced by their ave
nq;‘ed symbols In analogy to the effective Hamiltoniég, the

In the present work we have developed a theoretical tre
ment that is generally applicable for the description of multi
ple-pulse sequences under MAS. It is based on a combinati

So far, we have concentrated on the effective Hamiltoni& average Hamiltonian theory as a well-established tool for tt
.« which is usually sufficient for describing line-narrowinggnalysis of multiple-pulse sequencess 23, 24 and Floquet
experiments. For the analysis of other multiple-pulse expeteory 8, 182 for treating spin dynamics in rotating solids.
ments performed under MAS such as multiple-quantum exper-A special analytical Floquet formalism has been us&d (
iments, however, the whole time evolution might be of interetat has been already applied for the study of (homogeneol
including those contributions that are refocused by MAS f&Pin interactions under MAS7). The advantage of this for-
full rotor periods B). Then, it is not sufficient to consider only themalism with respect to the above analysis is that the MAS tirr
effective Hamiltonian; the full propagator must be analyzed. propagator and the pulse propagdiq; = exp[—l%(t2 —t)]

This analysis can be made by extending the results that hdath act within the same Liouville (or Hilbert) space while in
been derived in§) for studying simple one-pulse MAS exper-other Floquet treatments an infinite-dimensional Floquet—Hi
iments. For this, a general expression of the MAS time propert space is used for describing MAS3(21. Moreover, as
agator between two arbitrary moments of tinmgandt,, is already stated in previous work,(8), this Floquet formalism
required. Such a generalization is easily made following tlalows various aspects of a given MAS experiment to b
procedure developed i8), The only difference is that now the conveniently interpreted, such as, for example, the rotor-fr

3.5. Evolution of Coherences
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quency dependence of relevant parameters. The fundameRtatunately, the above analysis showed that such experime
result of combining average Hamiltonian theory and Floquate quite forgiving with respect to the ratibgry that are still
theory is expressed by Eqs. [5] and [6], which thus can be takacceptable. It was found that, even for ratios of up e, =
as a basis for analyzing any multiple-pulse sequence under MASsatisfactory resolution can be obtained (see Figs. 2 and 4
The main motivation for developing this formalism was to Apart from decoupling techniques, the recoupling cases al
extend previous zero-order approachesl6—17 to the next- can be analyzed on the basis of the above treatment. In contras
order approximation where the homogeneous nature of retkecoupling, the zero-order conditions of strongest recoupling |
vant spin interactions is taken into account. As a result,tgry = 2 andt/7z = 1) are directly found theoretically and in the
theoretical tool could be developed by which the conditiorexperiment. Synchronized recoupling seems to be more ea:
and limitations of multiple-pulse sequences under fast MA&hieved for homogeneous interactions than decoupling. This
can be understood, in principle. be explained by realizing that for recoupling it is sufficient tc
Based on this, some important conclusions can be drawn.réntroduce two-spin correlations, while for efficient decouplin
accordance with the experiment, pronounced decoupling cortdigher spin correlations also must be dealt with.
tions at certain ratios df/7z which are expected from zero-order In conclusion, we have analyzed the conditions and limitatior
treatment %, 17) are not found fott, < 7x. That is, these condi of multiple-pulse experiments under magic-angle spinning. Tt
tions seem to be smoothed out by the first-order contributions tlaaglysis clearly shows how important a suitable rgfig is for a
are now considered in addition. The implicit presence of thesaccessful experiment. It further reveals the principal limitatior
conditions, however, might be responsible for the fact that tloéthe present approaches but leaves room for the developmen
quasi-static regime effectively ranges up to a ratinof, = 2. new methods that are more suitable for MAS experiments. In tt
The zero-order synchronization conditions for 7 on the connection it should be noted that the multiple-pulse sequenc
other hand could be confirmed by the above theory. An expéhat were already applied under MAS have originally been deve
imental check was not possible with the semi-windowleggped for static conditions. It thus is hoped that progress can
pulse sequence used in the experiments but this is nomade by new pulse techniques developed directly for use unc
principal problem. However, there are arguments that sufdst magic-angle spinning.
conditions are not very useful for practical applications, where
usually different isotropic chemical shifts are present. For the APPENDIX
relatively large pulse spacing required for these synchroniza-
tion conditions, the isotropic chemical-shift evolution can no \ya will outline in the following the treatment of a multiple-

longer be neglected and the application of average Hamiltonialrﬂse sequence applied under MAS on the example of the WHF

theory thus becomes problemaFic. Intuitively s'pok.en, as Rise sequence (in thepulse limit) (1). For this, one has to
result of the off-resonance evolution, the magnetization vec ecifyN = 6 andr, = -+ = 7, = 7 in Egs. [8]-[12]. The

and the pulse directions are no longer in a fixed relationship

each other. Since pulses act only on magnetization compon&pf, intervals are given by the chronologically ordered sequen
that are perpendicular to them, the magnetization splits wﬁq Hym Hym Ham Hym Hynl, Where each component contains
xmy Tlymy Flzmy Flzmy Plymy Plxm]s

two components after every applied pulse. This results ingd,q(ar and isotropic chemical-shift contributions. For instanc
rapid decay of off-resonance signal contributions. Only if SUGH; {he x component one obtains fan = 0

an effect can be avoided, for instance, by using suitable com-
pensation strategies along the philosophy outline®8+27,
might these conditions become useful for line-narrowing experi- Heo = H5o = 2 wili [27]
ments. i

At present, however, pulsed line-narrowing under MAS
seems to be confined to quasi-static conditions. Quasi-statigd form # 0
conditions can be realized in form of the classical CRAMPS
experiment, where slow MAS is used practically only for the o i
removal of chemical-shift anisotropy and the pulse sequence is Him = Him = E @m (3l = 1il)). (28]
a highly efficient, high-order compensated sequence that deals =
with the dipolar interaction. An alternative realization is the
multiple-pulse assisted MAS experiment where quasi-staiibe sums are performed over all nuclear spins of the syste
conditions are achieved by minimizing the cycle time to the, are the isotropic chemical shifts, ang’ = w,(ij)b{(6;,
extreme and where the averaging of homogeneous interactign$ represents the dipolar interactions between the nucle
relies not only on the pulse sequence but also on fast MA®ins (the dipolar coupling constant and the angular coef
(15, 1. For such experiments a good compromise must be&nts are defined following the usual conventioris))( The
found between the technical limitations concerning the redugngles 0, ¢;;) give the orientation of the dipolar tensor with
tion of the cycle time and the need for high spinning speedgspect to the rotor frame. In case'sf spectra (which are our

gling frame Hamiltoniand$d,,, that correspond to these six
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main interest here) one can neglect the influence of the chem- i

ical-shift anisotropy due to fast MAS conditions.
According to Eqg. [7] only then = O component is present
in zero order of the effective Hamiltonian, i.e.,

wi(ly + 1y + 1y). [29]

The first-order term contains two distinct contributions. The
first, S, corresponds to the zero-order term in the Floquet
expansion which consists of Fourier components that represent i

first-order terms in the Magnus expansion, that is,

e = 2 {2 HY_Jaiy + [Hy HO_Ja

+ [Hymr HzD m]ayz+ [mer HE,fm]afn%X

+ [Hym Hy _mlaf + [H2m HY_laiy,  [30]
where the coefficients are given by
ay = [Cn(Te)Com(Ts) + CalT6)C_m(T2)
~ Cnl(75)Con(T1) — Ci(T2)Com(T0) ]
= [Cn(Te)Com(Ta) + Canl(T6)C_(T3)
— Cnl(79) (1) — Ci(Ta)Copml(T0) ]
ar=[cn(7s)C_m(74) + Cu(T5)C_m(T3)
~ Cnl(T4)Coin(T2) = Ci(Ta)Co(T2)]
m = [Cnl(76)Com(T) + Ci-m(T6) + Cnoml(T1)]
a¥ = [cn(1s)C_m(T2) + Com-m(Ts) + Cm_m(T2)]
a¥=[Cn(T)C n(T3) + Crm-m(Ts) + Cm_m(T3)], [31]

with ¢,,(7;) andc,,_.(7;) given by Egs. [9] and [11]. Taking

into account that alt; are equal to each other and equal with

7, they can be rewritten as

[sin(MwgT) + sin(4mwgT)][1 — coMwgT) ]

ay = 4i

(Mwg)?
_[sin(2mwgT) + Sin(BMwgT)][1 — codMwkT)]

arx=4i 5

" (Mwg)

ve_ [sm(meT) + sin(2mwg7)][1 — co MwgT) ]
&m = (Mwg)?
o _sin(bMmwgm)[1 — cogMwgT) ]

= 2i

(Mwg)?
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sin(MwgT)
me

J’_

T

sin(Bmwg7)[1 — codMwgT)]

Mwg

ay =2i (mag)?
i [ sin(meT)]
+ T —
m(l)R me
_sin(mwgT)[1 — cogMwgT) |
2z = 2i 5
(Mwg)
sin(MwgT)
+ |:T - ] . [32]
me me

Since the coefficienta?” are odd functions with respect to the
substitutionm — —m, i.e.,a®® = —a*, for each mixed commu
tator of the form HY,, HE,,WJ, one can introduce in Eq. [30] its
symmetric counterpart{s,,, Hx_.J. A further simplification is
obtained based on the relatlonsfﬁp [HS, HY ] = —3[Fz,
F°., whereF) = 3, bi(0;, @) 1, |« represents the isotropic part
(with respect to the spin operators) of the full dipolar Hamiltoniar
Taking into account these properties, the relations Eqgs. [30] a
[32] can be combined into a more concise expression, namely

. [Hom HE -l
@ — ap o :
8= 2 fn(n) 2 A 50
m o,B
[Fa F2nl
+ gn(7) T 2men [33]
where we have explicitly separated the coefficients
AY = AY = [sin(MwgT) + Sin(4mwgT) ]
AX = AZ = [sin(2mwgT) + SIN(3MwgT) ]
AY2 = AY = [sin(MwgT) + SIN(2MwkT) ]
AX = sin(bmwgT)
AYY = sin(3mwgT)
AZ = sin(mwgr), [34]

which depend on the components (3) and the functions

277 1 — codmwgT)

fn() = s [35]
and
1 sin(MwgT)
In(7) =5 (1 T Tmem ) [36]
which are independent of( ).
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The second contribution{?, % °]/ 2mwr, represents the
first-order term in the Floquet expansion which contains Fou-
rier components that are zero-order in the Magnus expansiof.

It can be evaluated following exactly the same steps as above

and, brought to a similar form as Eq. [33], reads

(0) (0) D
[%7”‘_ E f.(7) E BB )M 8.

2Mw (,OR

)

m

[37]

10.
No isotropic term is present here and the values of the (

B)-dependent coefficients are different from those of Eq. [33], i.e.,

11.
Xy — yx —
Bm =Bn 3MwgT [codmagr) + cod4magr)] 12.
Xz X -
BX?= B2 Mot [cog2mwgT) + COY3MwRgT) ] 13,
BY=B¥= [codmwgT) + co92MmwgT) ]

3MwgT 14.

1
XX —
B = 3Mmwr [1+ cog5mwgT)] 5
BY = i [1+ cod3mwgT)] 16.
™ 3MwgT
17.
B = [1+ codmwgT)]. [38]

3MwgT 18.
Now combining both contributions, one finds that the first-
order effective Hamiltonian, Eq. [7], is given by Eq. [15]. Thé®-

synchronization function$;’(7) result from the sum of the
corresponding coefficien&s andB and are given by Eq. [18]. 20
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