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The combination of magic-angle spinning and multiple-pulse
sequences for line-narrowing in solids with homogeneous spin
interactions is analyzed using Floquet theory. It is found that, for
quasi-static conditions and for special synchronization conditions,
line-narrowing is possible while for other conditions destructive
interference of the two techniques takes place. However, even for
optimum line-narrowing conditions, fundamental limitations with
respect to the achievable linewidth are found, whereas the condi-
tions of recoupling spin interactions are more easily realized. The
implications of these results with respect to improving existing
line-narrowing techniques or techniques for the design of specific
Hamiltonians are discussed. © 2000 Academic Press

1. INTRODUCTION

One of the advantages of NMR spectroscopy with respe
other spectroscopy techniques is the relative ease by whic
internal spin interactions can be manipulated in order to ex
the information one is interested in. Important example
such manipulation techniques are line-narrowing techni
such as multiple-pulse line-narrowing sequences (1) and

agic-angle spinning (MAS) (2, 3). These techniques remo
he anisotropic spin interactions that cause line-broadeni
olids so that considerable resolution can be obtained.
rom line-narrowing, multiple-pulse techniques become
reasingly important also for designing particular forms of
pin-interaction Hamiltonians, for instance, for the genera
f MQ coherences (4, 5).
The most convenient way to average anisotropic interac

s magic-angle spinning. By rotating the sample sufficie
ast at the so-called magic angle of 54.7° to the magnetic
he space part of the anisotropic spin-interaction Hamilton
s averaged out and the corresponding line-broadening
shes. While this is fully true for inhomogeneous lines in
ense of Maricq and Waugh (6), e.g., for chemical-shift an
sotropy, the situation is more difficult for so-called homo
eous interactions such as the multispin dipolar interactio

his case, sufficient averaging is obtained only at high spin
peeds, i.e., when the spinning frequency exceeds the str
ipolar coupling strength.
As was analyzed previously (7) based on a special Floqu

formalism (8), the dipolar interaction behaves more and m
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inhomogeneous-like for increasingly high spinning spe
However, as a consequence of the homogeneous chara
finite linewidth always remains. When investigating the l
width as a function of the rotor frequency, it was derived
it behaves according to 1/vR in the fast MAS limit (7). Con-
idering the technical limitation related to the increase o
pinning frequency beyond the currently achievable frequ
f 35 kHz, a considerable improvement in resolution by M
lone thus cannot be expected in the near future.
Multiple-pulse line-narrowing techniques based on the

raging of the spin part of the interactions are an alternati
ast MAS. They are more efficient with respect to the l
arrowing of homogenous lines since the cycle time of t
equences can be usually made much shorter than the
eriod. Moreover, applying special symmetry conditions, h
rder terms contributing to the linewidth can be elimina
9–11). The main problem using multiple-pulse spectrosc

however, is that pulses do not discriminate between the is
pic and the anisotropic (space) part of the interaction. Th
pulse sequences for eliminating chemical-shift anisotropy
remove the isotropic shift.

This limitation can be overcome by combining MAS a
multiple-pulse sequences to so-called combined rotation
multiple-pulse spectroscopy (CRAMPS) experiments (12–14).
In these experiments the multiple-pulse sequence is sup
to predominantly deal with the dipolar Hamiltonian, while
chemical-shift anisotropy is removed by sample spinnin
was, however, soon realized that both line-narrowing t
niques interfere with each other when the characteristic
scales of the averaging processes are in the same ord
practice, CRAMPS experiments were thus confined to
tively slow MAS frequencies of 2–3 kHz. Such rotor spe
are not always sufficient for the removal of the chemical-
anisotropy in the high magnetic fields of modern NMR sp
trometers. This is one reason, among others, why nowa
high-speed MAS experiments are becoming increasingly
ular (5).

The use of multiple-pulse sequences under the conditio
fast MAS was therefore investigated in previous papers15–
17). Two strategies for avoiding interference effects w
found to be promising. Following the original CRAMPS
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251MULTIPLE-PULSE TECHNIQUES UNDER FAST MAS CONDITIONS
proach, one can decouple both techniques using differen
scales for the characteristic times of the two techniques. U
fast MAS, thus the cycle time of the pulse sequence mu
reduced as much as possible leading to windowless or
windowless sequences (15, 16). The other approach (17) was
o investigate special ratios of the cycle timet c and the roto
periodtR for which interference vanishes or is greatly redu
Such synchronization conditions were established in zero-
approximation and a simple graphical scheme for the ana
of pulse sequences under MAS was developed (5, 17). While
the treatment discussed above enables one to conven
analyze necessary conditions for the design of pulse sequ
the limitation of this zero-order approach soon became evi
In particular for analyzing line-narrowing sequences, the
mogeneous character is important, and a more accura
scription is necessary. It is therefore the intention of this w
to improve the treatment to the next order. After a b
experimental section to demonstrate the effect of interfer
on the line-narrowing efficiency, we will apply the Floq
approach discussed in (7, 8) to the case of multiple-puls
sequences.

2. EXPERIMENTAL

As motivation for the theoretical analysis following belo
we now briefly investigate experimentally the limitations
multiple-pulse sequences under fast MAS as a function o
rotor frequency. The semi-windowless WHH-4 sequenc
Refs. (17, 16) is used as an example. The experiments w

erformed on a Bruker ASX spectrometer with a stan
ruker 2.5-mm MAS probe allowing a maximum rotor f
uency of 35 kHz. The pulse sequence according to (16) has

been implemented with a 90° pulse length of 2ms so that th
total cycle time is 12ms. For the acquisition of the sign
additional 4ms are introduced after every pulse cycle follow
he strategy outlined in (16). The effective cycle time thus
ncreased toward 16ms. L-Alanine was used as a test sam
Although the static linewidth of alanine extends 35 kHz (t
representing a real solid that cannot be dealt with by M
alone), it can be conveniently narrowed using multiple-p
sequences. Thus, alanine is an ideal sample for our purpos
study of possible interference effects between pulse seq
and MAS.

For this study, the rotor frequency was varied in steps
kHz between 10 kHz and the maximum of 35 kHz. Figu
shows selected multiple-pulse assisted MAS spectra fo
rotor-frequency values of 10, 15, 20, 25, 27, 30, and 35
As can be seen from this selection, the influence of the
frequency is quite dramatic between 25 and 35 kHz, w
complete collapse of resolution at around 30 kHz.

For a more quantitative analysis, the residual linewi
have been evaluated. Figure 2 shows the resulting linewid
the CH3 peak of the multiple-pulse assisted MAS spectrum

function the scaled rotor frequencyt c/tR. In the low-fre-
e
er

be
i-

.
er
is

tly
es,

nt.
-

de-
k
f
ce

f
e

of
re
d

.
s
S
e
the
ce

1
1
he
z.
or
a

s
of
s

uency part, the linewidth decreases with increasing
requency. In this range, MAS increasingly contributes to
limination of line-broadening effects resulting from mis

ustments, hardware limitations, and the error terms of
HH-4 sequence.
At around 12–13 kHz—still in the quasi-static regime

lateau is obtained which ranges up to 22 kHz. The u
alue corresponds to aroundt c/tR 5 1

3 which, according t
zero-order theory, is a condition of decoupling between
two line-narrowing techniques. That is, the plateau ra
from quasi-static conditions up to the synchronization ra
without displaying any influence of zero-order synchron
tion conditions such ast c/t R 5 1

3,
1
4,

1
5, and so on. Thes

conditions are obviously washed out by the influence

FIG. 1. Selected multiple-pulse assisted MAS spectra ofL-alanine ac
uired at the rotor frequencies specified to the left. With the exception
aseline-like spectrum at 30 kHz, the spectra have been normalized to th
eak high of the strongest peak (CH3 peak). The interference between M
nd the WHH-4 pulse sequence can be estimated by the correspondi
roadening. For more details on the experiment see Section 2.
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252 FILIP AND HAFNER
higher order terms, that is, they seem to merge with
other and with the quasi-static limit.

Reasons for line-broadening in this range are probably
terms of the pulse sequence that are not fully removed, in
mental imperfections that cannot be completely dealt wit
fast MAS (for instanceB1 inhomogeneities), and contributio
due to the interference of the two techniques (i.e., due t
failure of the quasi-static approximation). Nevertheless, r
lution in this range is much better than that found in MA
alone spectra (not shown) where the CH and CH3 groups ar
still not resolved. As usual in multiple-pulse NMR, the imp
tance of the different contributions is difficult to judge. Qu
itatively, one would assume that the interference effects d
dominate in the plateau because they are supposed to st
depend on the rotor frequency.

At around 20 kHz the effects of synchronization star
become important. Above 27 kHz, close to the recoup
conditiont c/tR 5 1

2, the linewidth becomes even too large to
measurable (merger of the three lines) while the MAS-a
linewidth now is below 1 kHz for the CH3 group. Finally
starting at around 34–35 kHz, the lines of the multiple-p
spectra become resolved again.

Summarizing these findings, one can state that the inte
tation of the results on the basis of zero-order theory are
satisfactory since most of the predicted synchronization
ditions are washed out by the homogeneous nature o
interactions, which is not accounted for in this approxima
A more detailed analysis that includes the homogeneous
of the interactions is thus necessary.

FIG. 2. Residual linewidths of the CH3 lines as a function of the scal
rotor frequencyt c/tR (t c is the cycle time of the pulse sequence andtR is the
rotor period) for the series of multiple-pulse assisted MAS spectra ofL-alanine
For low values of the rotor frequency, the linewidth is decreasing due t
increasingly stronger averaging by MAS until at aroundt c/tR 5 0.2 a platea
is reached. At aroundt c/tR 5 0.3 interference effects start to dominate and
to an increase of the linewidth. At the first recoupling conditiont c/tR 5 0.5 the
ecoupling is so strong that the linewidth cannot be determined anymor
igher rotor frequencies, the linewidth then decreases again until final
aximum spinning frequency of 35 kHz is reached.
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3. THEORY

3.1. General Approach

Floquet theory is a powerful tool for the treatment of ex
iments under MAS (18–21). An analytical Floquet formalism
hat is particularly suitable for our purpose was develope
ef. (8). It can be applied to a general rotor modulated H

iltonian

*~t! 5 O
m522

2

eimvRt*m, [1]

regardless of the particular form of the isotropic (*0) and
anisotropic (*m, m 5 61, 62) components. The spect
eparation and the residual broadening of the NMR lines in
f each MAS sideband are then conveniently described b
ffective Hamiltonian

*eff 5 *0 1 O
m

@*m, *2m#

2mvR
1 · · ·. [2]

When MAS is combined with cyclic multiple-pulse s
quences, the interaction Hamiltonian, Eq. [1], acquires a
ble time periodicity,

*~t! 5 O
m522

2

eimvRt*m~t!, [3]

ince here also the Fourier components*m are periodically
time-dependent with the cycle timet c of the given multiple
pulse sequence.

Two cases of pulsed line-narrowing techniques are t
distinguished now, the Lee–Goldburg-type sequences22)
where (similar to MAS in the real space) the periodicity in
duced by the radiofrequency is continuous, and convent
multiple-pulse sequences were the*m(t) are discontinuou
functions of time (1, 9–11). In the first case, a double Floqu
treatment appears to be convenient, while in the second th
of Floquet theory for both modulations is no more adva
geous. Separate treatments for the two cases, however,
avoided by noting that in any case the data are acquired o
multiples of the cycle time. Thus, the much simpler ave
Hamiltonian treatment (1, 11) can be employed for both cas
disregarding the detailed spin dynamics between two acq
tion points.

For simplicity, we thus confine our study, without loss
generality, to the case of a conventional multiple-pulse
quence. In order to bring the double time-periodic Ham
nian, Eq. [3], to a form similar to that of Eq. [1], an avera
over t c first has to be made. Since the periodicity witht c is

e

or
he
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253MULTIPLE-PULSE TECHNIQUES UNDER FAST MAS CONDITIONS
determined by the multiple-pulse sequence, we employ
Magnus expansion (23) to replace the time-dependent*m(t)
with time-independent Fourier components. Unlike the tr
ment of a static sequence, however, here the time-var
induced by MAS is also taken into account. For the avera
we consider the general expression of ak order term in th
Magnus expansion,

*# ~k!~n! , E
ntc

~n11!tc

eimkvRtkdtk E
ntc

tk

eimk21vRtk21dtk21· · ·

E
ntc

t2

eim1vRt1dt1F~*mk
~tk!, . . . , *m1~t1!!, [4]

corresponding to an arbitrary cyclen inside a given multiple-puls
sequence, that is, within the time interval [ntc, (n 1 1)tc].

The form of the functionF(*mk(t k), . . . , *m1(t 1)) is not
relevant for the present discussion since it does not expl
depend on time. Substitutingt9k 3 t k 2 ntc, t9k21 3 t k21 2
ntc, . . . , t91 3 t 1 2 ntc, Eq. [4] transforms to

*# ~k!~n! , ei ~mk1mk211· · ·1m1!vR~ntc!

3 E
0

tc

eimkvRt9kdt9k E
0

t9k

eimk21vRt9k21dt9k21. . .

E
0

t92

eim1vRt91dt91F~*mk
~t9k!,. . ., *m1~t91!!

5 ei ~mk1mk211· · ·1m1!~ntc!*# ~k!~0!. [5]

he factor obtained after integration is independent ofn al-
hough the modulation by MAS is included in the integ
# (k)(0). It characterizes the “internal structure” of the mu-
le-pulse sequence throught c and *mk(t9k). The time-depen-

dence by MAS is expressed in Eq. [5] by the modulation fa
exp[imvR(ntc)], (m 5 mk 1 mk21 1 . . . 1 m1), which now

epends on the “position” on the time axis of the consid
yclen. Thus, the average Hamiltonian*# (k)(n) of an arbitrary

cycle n can be expressed by the average Hamiltonian o
first cycle *# (k)(0) and a phase factor exp[imvR(ntc)] that
epresents its position on the time axis of the experiment
mportant to emphasize here that, although the above res
alid only at discrete moments of timet 5 ntc, in practice a

continuously running timet can be assumed since the ob
vation windows are located at integer multiples of the c
time.

Since the above considerations apply to any order in
Magnus expansion, we finally find that Eq. [3] can be rewr
in a form similar to that of the MAS Hamiltonian Eq. [1], i.
he

t-
on
g,

ly

l

r
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e
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e
n

*~t! 5 O
m522

2

eimvRt*# m. [6]

The Fourier components*# m are expressed now through
Magnus expansion,*# m 5 *# m

(0) 1 *# m
(1) 1 . . . . The remaining

rotor modulation can be removed as in the case of MAS-a
experiments, employing the procedure described in (7). Con-
fining the study to the part which is responsible for resi
broadening, one thus can conclude that the combined effe
MAS and the applied multiple-pulse sequence can be ch
terized by an effective Hamiltonian of the form of Eq. [2], i

*# eff 5 *# 0 1 O
m

@*# m, *# 2m#

2mvR
1 · · ·, [7]

where the Fourier components*m are replaced by the ave-
aged components*# m.

We consider now a general multiple-pulse sequence
cycle timet c that is composed ofN different time intervalsta

(with a 5 1, . . . , N). During each of these intervals, the s
interactions are represented by a toggling-frame Fourier
ponentHa,m. In Eq. [3] one thus has to set*m 5 H 1,m for ntc

, t , ntc 1 t 1, . . . , *m 5 HN,m for ntc 1 t 1 1 . . . 1
tN21 , t , (n 1 1)t c. For simplicity we confine our study
the d-pulse approximation, although in some of the exp
ments under fast MAS a semi-windowless limit is actu
used. The treatment of the semi-windowless sequence,
ever, gives only additional terms (crossterms) that would
to complications without providing much new insight. App
ing the above procedure up to the first-order terms in
Magnus expansion, one obtains

*# 0
~0! 5

1

tc
O
a

Ha,0ta

*# m
~0! 5

1

tc
O
a

cm~ta! Ha,m, [8]

with

cm~ta! 5 eimvR~t11· · ·1ta21!
eimvRta 2 1

imvR
[9]

nd

*# 0
~1! 5

2i

2tc
O
m

$ O
b.a

cm~tb!c2m~ta!@Hb,m, Ha,2m#

1 O
a

c0,m~ta!@Ha,m, Ha,2m#%



w

a

ste
im

del
s, w
dy
In
inte

he
th

ne

a

d

ile
ith

tions
n-

n (

254 FILIP AND HAFNER
*# m
~1! 5 S2i

2tc
D O

p,q

p1q5m

$ O
b.a

cp~tb!cq~ta!@Hb,p, Ha,q#

1 O
a

cp,q~ta!@Ha,p, Ha,q#%, [10]

ith

cp,q~ta! 5
1

iqvR
~cp1q~ta! 2 eiqvR~t11· · ·1ta21!cp~ta!! [11]

nd

c0,m~ta! 5
1

imvR
~cm~ta! 2 eiqvR~t11· · ·1ta21!ta!. [12]

3.2. Specific Example

The treatment so far is still general since neither the spin sy
nor the pulse sequence is specified. To keep the analysis s
we now confine our study to the WHH-4 pulse sequence (1). The
treatment of this specific example may then serve as a gui
for the analysis of any other multiple-pulse sequence. That i
are not so much interested in this specific sequence but in stu
the general aspects of such experiments on this example.
following we thus concentrate on the results and refer the
ested reader to the Appendix for details of the calculation.

Applying Eqs. [7]–[12] to the particular conditions of t
WHH-4 pulse sequence and restricting the analysis to
first-order terms of the effective Hamiltonian, Eq. [7], o
obtains (see Appendix)

*# eff 5 *# eff
~0! 1 *# eff

~1! [13]

with

*# eff
~0! 5

1

3 O
i

v i~I ix 1 I iy 1 I iz! [14]

nd

*# eff
~1! 5 *# 0

~1! 1 O
m

@*# m
~0!, *# 2m

~0! #

2mvR

5 O
m

H fm~t! O
a,b

f m
ab~t!

@H a,m
D , H b,2m

D #

2mvRb

1 gm~t!
@F m

D, F 2m
D #J . [15]
2mvR
m
ple,

ine
e

ing
the
r-

e

Here,v i is the isotropic chemical shift of thei th nucleus an
a, b run overx, y, andz. Ha,m

D 5 ¥ j.i vm
(ij )(u ij , w ij )(3I iaI ja 2

I i I j) is thea component of the full dipolar Hamiltonian, wh
Fm

D 5 ¥ j ,k bm
ij (u ij , w ij )I j I k represents its isotropic part (w

respect to the spin operators). The coefficientsgm(t) andfm(t)
represent those parts of what we call synchronization func
that are independent of (a, b). They are derived in the Appe
dix as

fm~t! 5
2p

3

1 2 cos~mvRt!

mvRt
[16]

and

gm~t! 5
1

6 S1 2
sin~mvRt!

mvRt D . [17]

Those parts of the synchronization functions that depend oa,
b) are also derived in the Appendix and are given by

f m
xx~t! 5 2FsinS5

2
mvRtD 1

1

3mvRt
cosS5

2
mvRtDG

3 cosS5

2
mvRtD

f m
yy~t! 5 2FsinS3

2
mvRtD 1

1

3mvRt
cosS3

2
mvRtDG

3 cosS3

2
mvRtD

f m
zz~t! 5 2FsinS1

2
mvRtD 1

1

3mvRt
cosS1

2
mvRtDG

3 cosS1

2
mvRtD

f m
xy~t! 5 2FsinS5

2
mvRtD 1

1

3mvRt
cosS5

2
mvRtDG

3 cosS3

2
mvRtD

f m
xz~t! 5 2FsinS5

2
mvRtD 1

1

3mvRt
cosS5

2
mvRtDG

3 cosS1

2
mvRtD

f m
yz~t! 5 2FsinS3

2
mvRtD 1

1

3mvRt
cosS3

2
mvRtDG

3 cosS1
mvRtD . [18]
2
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255MULTIPLE-PULSE TECHNIQUES UNDER FAST MAS CONDITIONS
Figure 3a shows a plot of the functionsgm(t) and Fig. 3b o
fm(t) fm

ab(t). On this basis we are able now to discuss inte-
ence and synchronization.

3.3. Synchronization

For discussing the line-narrowing efficiency of multip
pulse techniques under MAS conditions we rely on the re
obtained for the WHH-4 sequence but the conclusions d
on this basis are more generally valid. As in the case of
MAS (7) and of multiple-pulse sequences (1, 11) alone, her
also the line-narrowing is primarily due to the remova
two-spin correlations from*# eff. The way, however, in whic
he remaining spin correlations contribute to the resi
roadening is different since each order in the power expa
f *# eff contains the effects of both MAS and the app

FIG. 3. (a) The synchronization functionsgm(t), Eq. [36], for both Fou-
rier indicesm 5 1, 2 as a function oft/tR (t is the pulse length of th
semi-windowless WHH-4 sequence—see Experimental). (b) The same p
the six synchronization functionsfm(t) fm

(ab)(t), Eqs. [35] and [18], that resu
from all possible combinationsa, b 5 x, y, and z; here onlym 5 1 was
considered.
r

lts
n

st

f

al
on

multiple-pulse sequence. The ideal situation is given whe
two techniques are completely decoupled from each oth
this case, the lowest order terms would be eliminated
instance, by the action of the multiple-pulse sequence whil
higher order terms are greatly reduced by fast spinning. H
ever, as will be shown below, there is a strong interfer
between MAS and the multiple-pulse sequence, and onl
some special conditions is decoupling approached but
fully reached in practice.

To demonstrate this, we consider the results obtained i
previous section. The zero-order term of the effective Ha
tonian, Eq. [7], corresponds to the scaled isotropic chem
shift. Therefore, at this level there is no interference betw
sample rotation and pulse sequence. Interference starts
pear only with the first order. Comparing Eq. [15] with
first-order term of the MAS-alone case,

* eff
~1! 5

@H z,m
D , H z,2m

D #

2mvR
, [19]

one can identify the following effects that are responsible
interference: (i) the original (z, z) component of the MAS
alone case (see commutator in Eq. [19]) splits into all pos
(a, b) components (see Eq. [15]), and the relative contribu
of each of the components to the resulting Hamiltonian
weighted by synchronization functionsfm(t) fm

ab(t), and (ii)
there is an additional term in Eq. [15] that represents
isotropic contribution with respect to the spin operators
already discussed.

The two narrowing techniques act independently of e
other if the first-order term given by Eq. [15] is eliminat
This translates into following conditions for the synchron
tion functions:gm(t) 5 0 andfm(t) z fm

ab(t) 5 const.5 Am

simultaneously for both Fourier components,m 5 1, 2. In this
case, Eq. [15] transforms to

*# eff
~1! , O

m

Am

@H x,m
D 1 H y,m

D 1 H z,m
D , H x,2m

D

1 H y,2m
D 1 H z,2m

D #

2mvR
5 0. [20]

Thus, *# eff
(1) vanishes due to the magic-zero condition of

dipolar interactionHx,m
D 1 Hy,m

D 1 Hz,m
D 5 0, that is, due to th

action of the WHH-4 pulse sequence which, under these
ditions, does not interfere with MAS.

As can be seen from Figs. 3a and 3b, the above require
can be fulfilled only for a limited number of cases. M
specifically,gm(t) is exactly zero only when the ratiot/tR ;
vRt equals zero (see Fig. 3a), that is, when the (quasi-)
regime is ideally fulfilled. The other relation,fm(t) z fm

ab(t) 5
Am, holds if t/tR 5 k/ 2m for m 5 1 and 2 andk 5 0, 1,
2 . . . The case ofm 5 1 is illustrated in Fig. 3b, where all s
synchronization functions are shown. Form 5 2 everything is

for
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256 FILIP AND HAFNER
similar except that thet/tR-axis is “compressed” by a factor
two. Therefore, in this case the valuest/tR 5 k/4 (k 5 0, 1,
2 . . .) satisfy the above requirement.

As long as none of the functionsfm(t) z fm
ab(t) 5 Am and

m(t) can be neglected, the above conditions are fully sati
only whent/tR is close to zero, that is, for the (quasi-)st
case. In this case,gm(t) approaches zero (Fig. 3a) while
synchronization functionsfm(t) z fm

ab(t) are close to each oth
(Fig. 3b). Then,*# eff

(1) can be very well neglected, MAS and
applied multiple-pulse sequence act almost independently
decoupling is fully achieved. However, one should note th
practice quasi-static conditions are difficult to be obta
outside of the classical CRAMPS limit (slow spinning
around 2 kHz). In the case of multiple-pulse assisted M
experiments where sufficiently fast MAS is supposed to
tribute to decoupling, a compromise must be found betw
the cycle time of the applied pulse sequence and the achie
spinning speed.

From this point of view, the synchronized cases (t/tR 5
k/ 2) with k . 0 appear to be more advantageous since the
well compatible with the fast spinning regime. Moreover
principle, they can be exactly fulfilled for a rotating sam
while the other condition (k 5 0) is exactly valid only for th
static case. A drawback of this approach, however, is tha
synchronization conditiont/tR 5 k/ 2 leads to very large dwe
times: even in the most favorable case (t/tR 5 1

2 and a maxi
mum rotor frequency of 35 kHz) the corresponding dwell ti
dt 5 3tR . 100 ms, is so large that there might be proble
with the spectral width in the case of off-resonance acquis
(which is mostly used in multiple-pulse experiments). Anot
more principal, problem is the second term in*# eff

(1) which
cannot be made zero by synchronization (see Fig. 3a).
ever, since it is scaled by the comparatively small value
gm(t) (compare Fig. 3a with Fig. 3b), it can be neglecte
first approximation.

Inspecting Fig. 3b again, thet/tR range for some of th
decoupling conditions is very narrow, for instance, fort/tR 5
1
2. Apart from the difficulty in adjusting such narrow conditio
it is not clear how much the close neighborhood of recoup
conditions affects the achievable resolution in these c
More generally, outside of special synchronization conditi
one can no longer judge the narrowing efficiency by sim
qualitatively inspecting the synchronization functionsfm(t) z
fm

ab(t). Their behavior gets extremely complicated as we m
away from the special pointst/tR 5 k/ 2 (see Fig. 3b). T
further analyze the linewidth in these cases one can use a
quantitative approach based on the second moment ana

3.4. Linewidth and Second Moment

The residual linewidth is related to the second moment ac
ing to Dn ; =M2 (see also (7)). The contribution of the dipola
interaction to the second moment is in our case given by
d
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M2 , ^I yu* eff
~1!2uI y&. [21]

For the estimation of the second moment we should take
account that the (a, a) components in Eq. [15] are related
each other through¥ Ha,m

D 5 23Fm
D. One can further simplif

the analysis assuming that all spins have approximatel
same isotropic chemical shifts. Then, the commutation p
erties [Fij ,m

D , I ia 1 I ja] 5 0 and [Hy,m
D , I iy 1 I jy] 5 0 hold so

that the second moment depends only on the (z, z) dipolar
Hamiltonian as in the case of MAS alone. Thus, the
expression,

M2 5 O
m,p

M 2
MAS^m~t!^p~t!, [22]

contains the momentM 2
MAS of the MAS-alone case scaled

the functions

^m~t! 5 fm~t!@ f m
xx~t! 2 f m

zz#. [23]

ere, we have assumed that all terms with different Fo
ndices contribute equally to the second moment, whil
eality the contribution depends on the arrangement of sp
he investigated system. However, this affects only the abs
alue of M 2 for a given spin system but not the qualitat

behavior ofM 2 as a function oft c/tR.
Figure 4 shows the scaling function of the second mom

FM2 5 O
m,p

^m~t!^p~t! [24]

s a function oft c/tR. This function represents the influence
interference effects relative to the MAS-only second mom
M 2

MAS. It should be noted thatM 2
MAS is not a constant but

decreasing function of the rotor frequency. For our qualita

FIG. 4. Scaling functionFM2 according to Eq. [24] as a function oft c/tR.
This function represents the influence of interference effects on the re
linewidths. The plot thus can be taken as a qualitative representation
linewidth as a function oft c/tR. The range corresponding to the experim
(see Fig. 2) is indicated by two dotted lines.
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257MULTIPLE-PULSE TECHNIQUES UNDER FAST MAS CONDITIONS
considerations, however, we can disregard this since line
changes caused by interference are exclusively represen
the scaling functionFM2.

By inspecting Fig. 4, one can identify “partial synchron
tion” windows, whereM 2 (represented byFM2) is compara-
ively small (decoupling case), and windows of strong des
ive interference where the opposite applies (recoupling c
ualitatively, this result agrees well with the measured cu

n particular, it can be seen in Fig. 4 that the distinct sync
ization conditions expected from zero-order theory
moothed out as is indeed found experimentally. Further,
e seen that full decoupling is not possible between the
rst recoupling conditionst c/tR 5 0.5 andt c/tR 5 1. On the

other hand there are two conditions of full decoupling
aroundt c/tR 5 1.3 andt c/tR 5 1.5.

A strong deviation between theory and experiment is fo
in the low-frequency range up to about 10 kHz where
experimental lines are relatively broad, although quasi-s
conditions are quite well fulfilled in this regime. However,
already discussed, the experimental performance of the ap
pulse sequence (which is not high-order compensated) i
atively modest and cannot be fully compensated by MA
such low rotor frequencies. Only at frequencies above 10
is MAS able to sufficiently average the remaining terms (;1/
vR

2, 1/vR
3, . . .) in thepower expansion of*# eff

(1) (7).
If one compares the experimental result and the theory

closely, there are some small differences in the shape o
recoupling peak attc/tR 5 1

2, which seems to be sharper in Fig
than in Fig. 4. Here one should keep in mind that the decrea
the MAS-only moment with the rotor frequency is not accou
for by the scaling functionFM2 while it contributes to the expe-
imental data. Apart from that, some deviations between th
and experiment are not unexpected, considering the variou
plifications made for the derivation of Eqs. [22] and [23].
particular, the treatment is valid only in first order and thed-pulse
pproximation has been used while actually the opposite, a
indowless sequence, was applied experimentally.

.5. Evolution of Coherences

So far, we have concentrated on the effective Hamilto
#

eff which is usually sufficient for describing line-narrow
experiments. For the analysis of other multiple-pulse ex
ments performed under MAS such as multiple-quantum e
iments, however, the whole time evolution might be of inte
including those contributions that are refocused by MAS
full rotor periods (5). Then, it is not sufficient to consider only t
effective Hamiltonian; the full propagator must be analyzed

This analysis can be made by extending the results that
been derived in (8) for studying simple one-pulse MAS exp
iments. For this, a general expression of the MAS time p
agator between two arbitrary moments of time,t 1 and t 2, is
required. Such a generalization is easily made following
procedure developed in (8). The only difference is that now th
th
by
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initial state is not defined att 5 0 but at a timet 1 so that the
nitial stater(t 1) already incorporates the influence of MA
The result finally obtained for the general MAS propagato

ÛMAS~t2, t1!

5 O
mj

emjvRt2Ĉ†~2mj!e
2i*̂eff~t22t1! O

mk

emkvRt1Ĉ~mk!. [25]

The coefficientsĈ(m) represent the refocused part and
mportant for experiments where sideband analysis is of int
oth these coefficients and the effective Hamiltonian*eff are given

by power expansions in 1/vR (see Ref. (8) for the explicit form)
For the treatment of combined MAS and multiple-pu

experiments, we apply Eq. [6] to the propagator, Eq. [
which then transforms to

U#̂ MAS~t2, t1!

5 O
mj

emjvRt2C#̂ †~2mj!e
2i*#̂ eff~t22t1! O

mk

emkvRt1C#̂ ~mk!. [26]

The result is of the same form as Eq. [25] only with
coefficients and the effective Hamiltonian replaced by their a
aged symbols. In analogy to the effective Hamiltonian*# eff, the

coefficientsC#̂ (m) can be found by replacing the bare Fou
components*m with the averaged components*# m in the corre-
sponding expressions. An important consequence of Eq. [
that the formalism developed in the previous sections is
generally applicable. It is not only useful for deriving the effec
Hamiltonian, Eq. [7], but in fact the full-time propagator, Eq. [2
can be handled. That is, in principle, it can be employed to
cyclic pulse NMR experiment under MAS.

4. DISCUSSION AND CONCLUSIONS

In the present work we have developed a theoretical t
ment that is generally applicable for the description of m
ple-pulse sequences under MAS. It is based on a combin
of average Hamiltonian theory as a well-established tool fo
analysis of multiple-pulse sequences (1, 23, 24) and Floque
theory (8, 18–21) for treating spin dynamics in rotating solid

A special analytical Floquet formalism has been used8)
that has been already applied for the study of (homogen
spin interactions under MAS (7). The advantage of this fo
malism with respect to the above analysis is that the MAS

propagator and the pulse propagatorÛ av 5 exp[2i*̂(t 2 2 t 1)]
both act within the same Liouville (or Hilbert) space while
other Floquet treatments an infinite-dimensional Floquet–
bert space is used for describing MAS (18–21). Moreover, a

lready stated in previous work (7, 8), this Floquet formalism
llows various aspects of a given MAS experiment to
onveniently interpreted, such as, for example, the rotor
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258 FILIP AND HAFNER
quency dependence of relevant parameters. The fundam
result of combining average Hamiltonian theory and Flo
theory is expressed by Eqs. [5] and [6], which thus can be t
as a basis for analyzing any multiple-pulse sequence under

The main motivation for developing this formalism was
extend previous zero-order approaches (5, 15–17) to the next
order approximation where the homogeneous nature of
vant spin interactions is taken into account. As a resu
theoretical tool could be developed by which the condit
and limitations of multiple-pulse sequences under fast M
can be understood, in principle.

Based on this, some important conclusions can be draw
accordance with the experiment, pronounced decoupling c
tions at certain ratios oftc/tR which are expected from zero-ord
treatment (5, 17) are not found fortc , tR. That is, these cond-
tions seem to be smoothed out by the first-order contribution
are now considered in addition. The implicit presence of t
conditions, however, might be responsible for the fact tha
quasi-static regime effectively ranges up to a ratio oftc/tR 5 1

3.
The zero-order synchronization conditions fort c . tR on the

other hand could be confirmed by the above theory. An ex
imental check was not possible with the semi-window
pulse sequence used in the experiments but this is
principal problem. However, there are arguments that
conditions are not very useful for practical applications, w
usually different isotropic chemical shifts are present. Fo
relatively large pulse spacing required for these synchro
tion conditions, the isotropic chemical-shift evolution can
longer be neglected and the application of average Hamilto
theory thus becomes problematic. Intuitively spoken,
result of the off-resonance evolution, the magnetization ve
and the pulse directions are no longer in a fixed relationsh
each other. Since pulses act only on magnetization compo
that are perpendicular to them, the magnetization splits
two components after every applied pulse. This results
rapid decay of off-resonance signal contributions. Only if s
an effect can be avoided, for instance, by using suitable
pensation strategies along the philosophy outlined in (25–27),

ight these conditions become useful for line-narrowing ex
ents.
At present, however, pulsed line-narrowing under M

eems to be confined to quasi-static conditions. Quasi-
onditions can be realized in form of the classical CRAM
xperiment, where slow MAS is used practically only for
emoval of chemical-shift anisotropy and the pulse sequen
highly efficient, high-order compensated sequence that
ith the dipolar interaction. An alternative realization is
ultiple-pulse assisted MAS experiment where quasi-s

onditions are achieved by minimizing the cycle time to
xtreme and where the averaging of homogeneous intera
elies not only on the pulse sequence but also on fast
15, 16). For such experiments a good compromise mus
ound between the technical limitations concerning the re
ion of the cycle time and the need for high spinning spe
ntal
t
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ortunately, the above analysis showed that such experim
re quite forgiving with respect to the ratiost c/tR that are stil

acceptable. It was found that, even for ratios of up tot c/tR 5
1
3, satisfactory resolution can be obtained (see Figs. 2 an

Apart from decoupling techniques, the recoupling cases
can be analyzed on the basis of the above treatment. In cont
decoupling, the zero-order conditions of strongest recouplin
tc/tR 5 1

2 andtc/tR 5 1) are directly found theoretically and in t
experiment. Synchronized recoupling seems to be more
achieved for homogeneous interactions than decoupling. Th
be explained by realizing that for recoupling it is sufficien
reintroduce two-spin correlations, while for efficient decoup
higher spin correlations also must be dealt with.

In conclusion, we have analyzed the conditions and limita
of multiple-pulse experiments under magic-angle spinning.
analysis clearly shows how important a suitable ratiotc/tR is for a
successful experiment. It further reveals the principal limita
of the present approaches but leaves room for the developm
new methods that are more suitable for MAS experiments. In
connection it should be noted that the multiple-pulse sequ
that were already applied under MAS have originally been d
oped for static conditions. It thus is hoped that progress ca
made by new pulse techniques developed directly for use
fast magic-angle spinning.

APPENDIX

We will outline in the following the treatment of a multip
pulse sequence applied under MAS on the example of the W
pulse sequence (in thed-pulse limit) (1). For this, one has
specify N 5 6 andt1 5 . . . 5 t6 5 t in Eqs. [8]–[12]. The
toggling frame HamiltoniansHa,m that correspond to these
time intervals are given by the chronologically ordered sequ
[Hx,m, Hy,m, Hz,m, Hz,m, Hy,m, Hx,m], where each component conta
dipolar and isotropic chemical-shift contributions. For insta
for thex component one obtains form 5 0

Hx,0 5 H x,0
CS 5 O

i

v i I ix [27]

and form Þ 0

Hx,m 5 H x,m
D 5 O

j.i

v m
~ij !~3I ixI jx 2 I iI j!. [28]

The sums are performed over all nuclear spins of the sy
v i are the isotropic chemical shifts, andvm

(ij ) 5 vD(ij )bm
(ij )(u ij ,

w ij ) represents the dipolar interactions between the nu
spins (the dipolar coupling constant and the angular co
cients are defined following the usual conventions) (11). The
angles (u ij , w ij ) give the orientation of the dipolar tensor w
respect to the rotor frame. In case of1H spectra (which are o
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259MULTIPLE-PULSE TECHNIQUES UNDER FAST MAS CONDITIONS
main interest here) one can neglect the influence of the c
ical-shift anisotropy due to fast MAS conditions.

According to Eq. [7] only them 5 0 component is prese
n zero order of the effective Hamiltonian, i.e.,

*# eff
~0! 5

1

3 O
i

v i~I ix 1 I iy 1 I iz!. [29]

The first-order term contains two distinct contributions.
first, *# 0

(1), corresponds to the zero-order term in the Flo
xpansion which consists of Fourier components that repr
rst-order terms in the Magnus expansion, that is,

*# 0
~1! 5

2i

2tc
O
m

$@H x,m
D , H y,2m

D #am
xy 1 @H x,m

D , H z,2m
D #am

xz

1 @H y,m
D , H z,2m

D #am
yz 1 @H x,m

D , H x,2m
D #am

xx

1 @H y,m
D , H y,2m

D #am
yy 1 @H z,m

D , H z,2m
D #am

zz%, [30]

here the coefficients are given by

am
xy 5 @cm~t6!c2m~t5! 1 cm~t6!c2m~t2!

2 cm~t5!c2m~t1! 2 cm~t2!c2m~t1!#

am
xz 5 @cm~t6!c2m~t4! 1 cm~t6!c2m~t3!

2 cm~t3!c2m~t1! 2 cm~t4!c2m~t1!#

am
yz 5 @cm~t5!c2m~t4! 1 cm~t5!c2m~t3!

2 cm~t4!c2m~t2! 2 cm~t3!c2m~t2!#

am
xx 5 @cm~t6!c2m~t1! 1 cm,2m~t6! 1 cm,2m~t1!#

am
yy 5 @cm~t5!c2m~t2! 1 cm,2m~t5! 1 cm,2m~t2!#

am
zz 5 @cm~t4!c2m~t3! 1 cm,2m~t4! 1 cm,2m~t3!#, [31]

ith cm(t j) andcm,2m(t j) given by Eqs. [9] and [11]. Takin
into account that allt j are equal to each other and equal w
t, they can be rewritten as

am
xy 5 4i

@sin~mvRt! 1 sin~4mvRt!#@1 2 cos~mvRt!#

~mvR! 2

am
xz 5 4i

@sin~2mvRt! 1 sin~3mvRt!#@1 2 cos~mvRt!#

~mvR! 2

am
yz 5 4i

@sin~mvRt! 1 sin~2mvRt!#@1 2 cos~mvRt!#

~mvR! 2

am
xx 5 2i

sin~5mvRt!@1 2 cos~mvRt!#

~mvR! 2
m-

e
t

ent

1
i

mvR
F t 2

sin~mvRt!

mvR
G

am
yy 5 2i

sin~3mvRt!@1 2 cos~mvRt!#

~mvR! 2

1
i

mvR
F t 2

sin~mvRt!

mvR
G

am
zz 5 2i

sin~mvRt!@1 2 cos~mvRt!#

~mvR! 2

1
i

mvR
F t 2

sin~mvRt!

mvR
G . [32]

Since the coefficientsam
ab are odd functions with respect to t

substitutionm3 2m, i.e.,am
ab 5 2a2m

ab for each mixed commu-
tator of the form [Ha,m

D , Hb,2m
D ], one can introduce in Eq. [30] i

symmetric counterpart [Hb,m
D , Ha,2m

D ]. A further simplification is
obtained based on the relationship¥a [Ha,m

D , Ha,2m
D ] 5 23[Fm

D,
F2m

D ], whereFm
D 5 ¥j,k bm

ij (uij, wij) I j I k represents the isotropic p
(with respect to the spin operators) of the full dipolar Hamilton
Taking into account these properties, the relations Eqs. [30
[32] can be combined into a more concise expression, nam

*# 0
~1! 5 O

m

fm~t! O
a,b

Am
ab~t!

@H a,m
D , H b,2m

D #

2mvR

1 gm~t!
@F m

D, F 2m
D #

2mvR
, [33]

where we have explicitly separated the coefficients

Am
xy 5 Am

yx 5 @sin~mvRt! 1 sin~4mvRt!#

Am
xz 5 Am

zx 5 @sin~2mvRt! 1 sin~3mvRt!#

Am
yz 5 Am

zy 5 @sin~mvRt! 1 sin~2mvRt!#

Am
xx 5 sin~5mvRt!

Am
yy 5 sin~3mvRt!

Am
zz 5 sin~mvRt!, [34]

which depend on the components (a, b) and the functions

fm~t! 5
2p

3

1 2 cos~mvRt!

mvRt
[35]

and

gm~t! 5
1

6 S1 2
sin~mvRt!

mvRt D , [36]

which are independent of (a, b).
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The second contribution, [*# m
(0), *# 2m

(0) ]/ 2mvR, represents th
first-order term in the Floquet expansion which contains
rier components that are zero-order in the Magnus expan
It can be evaluated following exactly the same steps as a
and, brought to a similar form as Eq. [33], reads

O
m

@*# m
~0!, *# 2m

~0! #

2mvR
5 O

m

fm~t! O
a,b

Bm
ab~t!

@H a,m
D , H b,2m

D #

2mvR
.

[37]

No isotropic term is present here and the values of thea,
b)-dependent coefficients are different from those of Eq. [33]

Bm
xy 5 Bm

yx 5
1

3mvRt
@cos~mvRt! 1 cos~4mvRt!#

Bm
xz 5 Bm

zx 5
1

3mvRt
@cos~2mvRt! 1 cos~3mvRt!#

Bm
yz 5 Bm

zy 5
1

3mvRt
@cos~mvRt! 1 cos~2mvRt!#

Bm
xx 5

1

3mvRt
@1 1 cos~5mvRt!#

Bm
yy 5

1

3mvRt
@1 1 cos~3mvRt!#

Bm
zz 5

1

3mvRt
@1 1 cos~mvRt!#. [38]

Now combining both contributions, one finds that the fi
order effective Hamiltonian, Eq. [7], is given by Eq. [15]. T
synchronization functionsfm

ab(t) result from the sum of th
corresponding coefficientsA andB and are given by Eq. [18
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